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1. Introduction
We first explore the effect of input image sequence length in Section 2 and explore the impact of the synthetic and real

datasets in Section 3. We then show some samples of our synthetic dataset and our newly collected real-world dataset in
Section 4. Finally, we show more visual comparisons of different methods in Section 5.
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Figure 1. Effect of image sequence length.

Real20 Nature SIR2 Seq1K

SSIM↑ LMSE↓ SSIM↑ LMSE↓ SSIM↑ LMSE↓ SSIM↑ LMSE↓

Syn. 0.7698 0.0231 0.7672 0.0140 0.8959 0.0043 0.8804 0.0096

Seq1K 0.7924 0.0212 0.7911 0.0136 0.8850 0.0053 0.8910 0.0084

Syn. + Seq1K 0.8048 0.0200 0.7941 0.0129 0.8962 0.0046 0.9020 0.0072

Table 1. Impact of synthetic (Syn.) and our real (Seq1K) datatsets on the performance of our model on four real-world datasets.

2. Effect of Input Image Sequence Length
To explore the effect of the length of input image sequences to our teacher network, we experiment with training our

model using different image sequence lengths and test the resulting models on four evaluation datasets. Figure 1 shows
that compared with training using single images, training with image sequences can lead to performance improvements. In
addition, the models trained on longer image sequences better performance. However, we also note that, using a image
sequence length of greater than 3 does not lead to further performance improvement. This is perhaps because a sequence of
3 multi-view images already contains sufficient motion information for our model to learn reflection dynamics for removing
reflections well. Thus, we choose to use sequences of 3 images in our experiments.

3. Impact of the Synthetic and Real datasets
To analyze the influence of our synthetic and real data, we experiment with training our on each or both of the two datasets.

The results are shown in Table 1. Compared with using either the synthetic data or the real data only, training on the combined
data gains the best performances on three real-world datasets (i.e., Real20, Nature and Seq1K). This suggests both datasets
are important to the superior performance of our method.



4. Examples of Our Synthetic and Real Datasets
We show some examples from our synthetic and real datasets in Figure 2 and Figure 3. Figure 4 show some examples

of reflection images in our real dataset. It can be seen that our real dataset covers a wide range of scenes, both indoor and
outdoor, and different lighting conditions, both light and dark.

Figure 2. Examples of synthetic reflection image sequences.



Multi-view image sequence The transmission image of 

the center image

Figure 3. Some image sequences from our real dataset (left) along with the ground truth transmission image of the center image in each
sequence (right).



Figure 4. Examples of collected reflection images in our read dataset.



5. More visual results
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Figure 5. Visual comparison of our method against prior methods on real-world images.
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Figure 6. Visual comparison of our method against prior methods on real-world images.
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Figure 7. Visual comparison of our method against prior methods on real-world images.
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Figure 8. Visual comparison of our method against prior methods on real-world images.
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Figure 9. Visual comparison of our method against prior methods on real-world images.
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Figure 10. Visual comparison of our method against prior methods on real-world images.
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Figure 11. Visual comparison of our method against prior methods on real-world images.
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