Distilling Reflection Dynamics for Single-Image Reflection Removal
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(a) Multi-view sequence
Figure 1: Given an image sequence of a static scene captured by moving a camera (a), observing the appearance change

in the reflection regions (highlighted by red boxes) will make it easier to separate the transmission layer from the reflection
layer. Such appearance change can be regarded as a result of moving the transmission layer and reflection layer along different
trajectories. We learn such reflection dynamics from multi-view image sequences for single-image reflection removal (SIRR),
enabling our method to remove the reflection more accurately (c) than the state-of-the-art method (b).

Abstract

Single-image reflection removal (SIRR) aims to restore
the transmitted image given a single image shot through
glass or window. Existing methods rely mainly on infor-
mation extracted from a single image along with some pre-
defined priors, and fail to give satisfying results on real-
world images, due to inherent ambiguity and lack of large
and diverse real-world training data. In this paper, instead
of reasoning about a single image only, we propose to dis-
till a representation of reflection dynamics from multi-view
images (i.e., the motions of reflection and transmission lay-
ers over time), and transfer the learned knowledge for the
SIRR problem. In particular, we propose a teacher-student
framework where the teacher network learns a representa-
tion of reflection dynamics by watching a sequence of multi-
view images of a scene captured by a moving camera and
teaches a student network to remove reflection from a sin-
gle input image. In addition, we collect a large real-world
multi-view reflection image dataset for reflection dynam-
ics knowledge distillation. Extensive experiments show that
our model yields state-of-the-art performances.

1. Introduction

Reflection often appears when taking photos through
glass or windows. It can severely ruin the visual quality
of a photograph. The reflection formation process is formu-
lated as I = T + R ® k, where [ is the reflection image, T
is the reflection layer, R is the transmission layer and k is
the blurriness kernel. The objective of single-image reflec-
tion removal (SIRR) task is to recover the desired transmis-
sion layer, given an observed reflection image, which is an
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ill-posed problem. The content of a reflection may also be
affected by many factors, such as scene content, glass prop-
erty, camera angle and lighting condition, which make the
problem very challenging.

Due to the ill-posed nature of SIRR, most of the existing
works utilize priors that are either hand-crafted [28, 20, 16]
or learned from large datasets [32, 33, 41, 34]. Neverthe-
less, they still largely rely on information extracted from
single images and may generate degraded results when ap-
plied to real-world images.

We observe that humans often look at a scene from mul-
tiple viewpoints in order to disambiguate the transmitted
content from the reflected content. For example, if we just
look at the the middle image in Figure 1(a), it may be dif-
ficult to separate the transmitted/reflected contents. How-
ever, if we have access to the sequence of images captured
by moving a camera from left to right, and compare their
local appearance changes, the layer separation task will be-
come much easier. For example, by looking at the contents
of the red regions in Figure 1, we can observe that the re-
flected content shifts a lot to the left while the transmitted
content only shifts a little to the left. We refer to the mo-
tion of the reflection and transmission layers over time as
reflection dynamics. This implies that given a static scene
and small camera motion, reflection dynamics captured by
a sequence of multi-view images can provide useful cues
for reflection removal. Through learning such reflection dy-
namics, we can recover the transmission layer more reliably,
as shown in Figure 1(c).

Inspired by this observation, we propose a learning
framework for SIRR, by learning and transferring the



knowledge of reflection dynamics from multi-view image
sequences. While some prior works have explored the idea
of using multiple images for reflection removal/layer sepa-
ration [14, 1, 8, 19], they require multiple images as input
during inference and thus are not applicable to the SIRR
problem. In contrast, despite being trained on multi-view
image sequences, our method only observes a single in-
put image at test time. Our framework is built upon a
teacher-student framework where we use multi-view image
sequences to train a teacher network to learn a representa-
tion of reflection dynamics and a student network to halluci-
nate the representation from a single input image for SIRR.
At the crux of the teacher network is a newly proposed
multi-view knowledge learning module, which encourages
a representation that encodes reflection dynamics to emerge
by explicitly predicting the motions of reflection and trans-
mission layers across different views without direct super-
vision. Compared to traditional single-view methods, our
model can leverage motion information from the halluci-
nated representation, even only given a single test image.

To train our model, we collect a large, real multi-view
reflection image dataset, named SeqlK, containing 1015
image sequences from different real-world scenes. Each
sequence comprises three frames of a scene captured by a
slowly moving camera, with the ground truth transmission
layer of the center frame. To learn reflection dynamics more
effectively, we further propose an approach to generate syn-
thetic multi-view images. Our experimental results show
that learning from the combination of real and synthetic im-
ages can lead to significant performance improvement.

To sum up, we make the first attempt to distill reflection
dynamics knowledge from multi-view images for single-
image reflection removal, and propose a framework that
learns a representation of reflection dynamics from multi-
view image sequences and transfers it to single static im-
ages. Moreover, we contribute a large-scale dataset of
multi-view reflection image sequences, which can be used
to train and evaluate both our model and traditional SIRR.
Extensive evaluations on several benchmarks and our newly
collected dataset show that our proposed method outper-
forms existing methods, achieving state-of-the-art results.

2. Related Work

Single-Image Reflection Removal (SIRR). Early meth-
ods usually handle it with pre-defined priors, e.g., ghosting
cues of the reflection layer [28], sparsity [16], and smooth-
ness [20]. These methods depend highly on the asymme-
try prior of the two layers, and their applicability is lim-
ited by their specific assumptions. Recently, learning-based
methods are popular for reflection removal. These methods
learn powerful features from a large amount of data with
well-designed networks [41, 34, 5,32, 41, 31, 17]. To ease
learning, some auxiliary cues are used. For example, edge
information is explored by [5, 32], which is either jointly

predicted with the transmission layer [32] or predicted us-
ing two stages [5]. Auxiliary semantic features are also uti-
lized in [41, 34, 17], and usually extracted from a VGG net-
work. Later, auxiliary layer information is widely studied
by [39, 35, 22, 11, 17]. This information can be learned
by one network first [39], or jointly predicted with the tar-
get image to be constraint by a well-designed reconstruc-
tion loss [35, 22, 11], or used to iteratively refine the tar-
get image [17]. Some methods used gated network [26] or
hybrid network [25] for image dehazing or image enhance-
ment. Although learning-based methods achieve good per-
formances, they all try to address the problem from a single-
image perspective. In contrast, we train our model on image
sequences to learn reflection dynamics knowledge and use

it for the SIRR problem.
Multi-Image Reflection Removal. Another line of work

exploits multiple input images to alleviate the ill-posed na-
ture of reflection removal. Specific multiple images are
explored, e.g., flash/unflash pair images [!], polarized im-
ages [14, 36, 15, 12] and etc. Special physical cues from
multiple images [27, 1, 8, 19] are also widely studied, in-
cluding the depth information from multiple images [27],
the different motion information of reflection and transmis-
sion layers [8], “defocus-disparity” cues [30] and etc. In
general, multi-image-based methods can achieve good per-
formances. However, all these methods require multiple
images as input, which renders them not applicable to the
SIRR problem. In contrast to these works, our framework
uses multiple images only in the training stage, and takes as
input a single image during inference.

Video Reflection Removal. Motion cues are often used to
tackle video reflection removal [7, 38, 6, 2, 24]. They are
used under the assumption that the motion fields of the two
layers are different. Hence, they can help separate the two
layers and reduce the artifacts via temporal coherency con-
strains. Similar in spirit to these works, we also take advan-
tage of the motion information (i.e., reflection dynamics in
our work) captured from image sequences to help separate
an image into different layers. Unlike real videos that con-
tain both object and camera motions, we assume that only
the camera is moving in our image sequences. This means
that we factor out object motion and learn to exploit camera
motion only for layer separation. As such, these methods
cannot be easily adapted to address our problem, as their

input is a video, instead of a single image.
Knowledge Distillation. Knowledge distillation was

originally for compressing a large model (teacher model) to
a compact one (student model) [9, 30]. It has been widely
used in the image classification task via the student model
to mimic the output distribution of the teacher model. In
addition, knowledge distillation is also used in other vision
tasks, e.g., pedestrian re-identification [3], semantic seg-
mentation [37, 21] and object detection [18]. In our work,
we aim to distill reflection dynamics from image sequences
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Figure 2: Overview of our learning framework. (a) Teacher Network. The input is a multi-view image sequence and the
output is the estimated transmission layer of the middle image of the input sequence. (b) Student Network. The input is a
single image (or the middle image of the sequence during training) and the output is the estimated transmission image.

and apply it to single images for reflection removal via a
teacher-student paradigm.

3. Learning Framework

Given an input image Z X" >3 where H and W are the
image height and width, reflection removal aims to recover
its transmission layer 77>W>3_ Our key idea is to cap-
italize on information about reflection dynamics (i.e., the
motions of the transmission and reflection layers) contained
in multi-view image sequences to tackle the SIRR problem.
Our framework is based on a teacher-student paradigm as
shown in Figure 2. The teacher model observes a multi-
view image sequence and explicitly learns a reflection dy-
namics representation that is useful for separating the trans-
mission layer from the center image of the sequence. The
learned representation is then used to teach a single-view
student model to remove reflection from a single input im-
age. During training, the teacher and student networks are
coupled. However, during inference, the student network
will be used as a stand-alone SIRR model.

3.1. Teacher Network

Our teacher network takes as input a sequence of N
multi-view images and outputs a transmission image. We
use N = 3 in our work, which we empirically find to work
the best. It is composed of one encoder, a multi-view knowl-
edge learning (MKL) module, and a decoder. The encoder
is used to extract image-wise visual features from the input
sequence of multi-view images. The MKL module learns
a representation that captures reflection dynamics from the
sequence of image features. The decoder then decodes the
representation to output a transmission image.

3.1.1 Encoder

The encoder is to extract deep image features. Given an in-
put image sequences (I;_1,I;, I411), it outputs per-image
features (fi—1, ft, ft+1). The encoder is composed of 4
convolutional layers, each of which has 256 kernels of size
3 x 3. Note that, unless otherwise stated, all convolutional
layers in our model are followed by a ReLU nonlinearity.
To avoid color attenuation/shifting problems, we do not use
any normalization layers as in [34].

3.1.2 Multi-view Knowledge Learning (MKL) Module

The MKL module is the core module to distill reflection
dynamics knowledge from the encoded image features. Its
output is a representation. To enforce that the learned rep-
resentation encodes the reflection dynamics, we explicitly
predict the motions of the reflection and transmission lay-
ers across the input sequence. However, a key challenge is
that we do not have direct supervision on the motions. To
address this, we design the MKL module to learn the layer
motions jointly with feature disentanglement of the reflec-
tion and transmission layers in each image. This allows us
to encourage the learned layer motion to be plausible by
performing temporal alignment of the corresponding layers
adjacent in time in the learned feature space.

Figure 3 shows the overview of the module, which com-
prises a decouple net, a flow net and a fusion net. The per-
image features are first fed into the decouple Net, produc-
ing two groups of features, {®r, Ur} and {®r, U1}, for
the transmission and reflection layers, respectively, of each
image. For a pair of adjacent images (e.g., I;—1 and I),
the disentangled features are passed through the flow net to
predict two motion fields from one image to another, one
for the reflection layer and the other for the transmission
layer. The features from the two flow nets, one for each
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Figure 3: Multi-view Knowledge Learning Module.

adjacent image pair, are then fed into the fusion net. The
fusion net outputs a representation, by combining the flow
net features, the transmission features of the center image,
and the warped transmission features of the two nearby im-
ages according to the estimated motion fields.

Decouple Net. The decouple net aims to decouple an in-
put image into two sets of features for the transmission
and reflection layers of the image. It follows an encoder-
decoder architecture. The image features are equally split
to two sets, ®r and @7, which capture the visual seman-
tics of the reflection and transmission layers, respectively.
The features are then fed into two decoders, Gt and Gg,
to reconstruct the reflection and transmission layers. The
two decoders share the same architecture, which contains
1 deconvolutional layer (128 kernels of size 4 x 4) and 3
convolutional layers (128 kernels of size 3 x 3).

Let @}, and ®%, be the transmission and reflection fea-
tures of image I;. To learn disentangled features, we intro-
duce a feature decoupling loss that measures how close the
reconstructed layers are to their ground truth O and O%;:

Lhp = UG (Dh),00) + U GR(PR),0k), (1)

where [(z,y) = ||z —y||1 +]|| V& —Vyl|1 is the reconstruc-
tion loss in terms of both image and gradient domains. We
may also apply this loss to the other two images, I?~! and
I**1, if the ground truth transmission and reflection layers
for them are available. In this case, the feature decoupling
loss of the sequence is defined as:

Lrp=L%p + Lop + LS. ©

Flow Net. The flow net aims to predict how the transmis-
sion and reflection layers move between two adjacent views
(i.e., {I4, I;_1} or {I;, I;11}). In order to predict the layer
motion well, the flow net should learn features that carry
rich information of reflection dynamics from one view to
another. The input to it is the concatenation of the disentan-
gled high- and low-level features from the two views along
the channel dimension. It has five convolutional layers: the
first layer has 512 kernels of size 3 x 3, the following three
layers have 128 kernels of size 3 x 3, and the last layer has 2

kernels of size 3 x 3, to output two 1-channel motion fields
Fr and Fg for the transmission and reflection layers.

We apply a view synthesis loss to the predicted flow
maps to ensure that they are able to model meaningful mo-
tion fields. We evaluate the quality of each motion field
by measuring how well it can be used to warp one view
to reconstruct another. Formally, let <I>§T1 and <I>§F be the
transmission layer features of images I;_; and I, respec-
tively. The quality measure of the predicted flow map
M:tp’t_1 between the two transmission layers is defined as:
ti—1 - tyt—1
I = |9 — warp(®Lt, My ™)||2, where warp(-)
is a warping process via bilinear interpolation. Similarly,

tt—1 _ . gtt—1t
we define a quality measure for My S
|| @Y — warp(®Lt, Mp'~ Y||2. The view synthe51s objec-
tive is then defined as:

»CVS — l;;tfl + l%tfl + l;lt+1 + 13%154»17 (3)

where léitﬂ and l}’f“ are defined in the same way as léiti1
and lﬁ%til, but for Mqt:t*1 and Mlt%’tfl, respectively.
Fusion Net. It aims to fuse the reflection dynamics fea-
tures and the transmission features of the three input images
to learn a representation, which encodes not only the infor-
mation of all the input images but also the reflection dynam-
ics across them. To combine the features from the images
at time steps ¢ — 1 and ¢ + 1, their transmission features
are warped to align with the center image ¢ based on the
estimated corresponding motion fields. The fusion net first
fuses the reflection dynamics features and transmission fea-
tures of the center image by concatenating them along the
channel dimension and passing them through three convo-
lutional layers with 640, 128, 128 kernels of size 3 x 3. The
output features are then combined with the warped trans-
mission features and sent into two convolutional layers with
384, 128, 128 kernels, to output the distilled representation
to be transferred to the student network.

3.1.3 Decoder

The decoder aims to transform the distilled representation
into an output image, corresponding to the transmission
layer of the center input image. It is composed of 2 up-
sampling blocks. The first up-sampling block has one de-



convolutional layer, one convolutional layer and one pyra-
mid pooling layer [42]. The pyramid pooling layer is used
to obtain multi-scale spatial context and has been shown to
be effective in the semantic segmentation task [42]. It is
composed of 4 average pooling layers with kernel sizes 4,
8, 16, 32. The second up-sampling block has one deconvo-
lutional layer with 256 kernels of size 4 x 4 followed by two
convolutional layers with 256 kernels of size 3 x 3.

We supervise the output image using a reconstruction
loss and a perceptual loss. The reconstruction loss is used
to measure the pixel-wise difference between the predicted
transmission layer L and the ground truth in the gradient
domain and image domain:

Lr =Y |IL—Llli +[[VL = VL. )

The perceptual loss measures the difference between the
prediction and the ground truth in the feature space. Sim-
ilar to [41, 34], our perceptual loss is computed based on
“conv5_3” of VGG-19 [29]:

Lp = [I$(L) = $(L)II1, 5)

where ¢ is the feature map of the “conv5_3” layer.
The full objective of the teacher network is then:

ﬁteacher = OlpCR + Btﬁp + "Ytﬁ]:'D + Ctﬁ\/S- (6)
3.2. Student Network

The student network takes as input the center image in
the input sequence and learns to hallucinate a representa-
tion of reflection dynamics from the MLK module, so that
it can be used to reconstruct the transmission layer of the
input image well. We feed the input image into a halluci-
nation module and a feature encoder to predict the distilled
representation and extract visual features. The hallucination
module consists of 5 convolutional layers of size 3 x 3 and
(256, 256, 256, 256, 128) kernels. The predicted representa-
tion and visual features are then concatenated and send into
a context module, which aims to fuse them by exploiting
global context information across the channels of its input
as in [34, 10]. It is composed of 10 residual channel-wise
blocks, each having two convolutional layers followed by a
channel-wise attention layer. The input features v are first
fed into two convolutional layers of the residual channel-
wise block to obtain features v/, which are then fed to a
channel-wise attention block [34, 10] to generate a channel-
wise attention vector u. v’ is multiplied by u element-wise
to obtain new features v, which are added to v. The output
from the context block is converted to the output image via
a decoder that has the same architecture as the decoder in
the teacher network.

To train the student network, we introduce a transfer loss
and an adversarial loss. The transfer loss aims to minimize
the difference between the output of the hallucination mod-
ule in the student network f; and the MKL module in the
teacher network f;:

Lr=>_|lfs— fillr. (7

The adversarial loss aims to reduce the gap between the
hallucinated and distilled representations. To stabilize the
training process, we use the least-square loss [23]:

ﬁg = E-TNPfake(ff)[(D(x) - 1)2]a (8)

where D is a discriminator that distinguishes between real
and fake representations. We adopt the discriminator setup
in PatchGAN [43], which operates on overlapping patches
from the input. The loss for D is formulated as:
L0 = Ermpy (D@ 4 By (D) — 1.
©)
We train the student network by minimizing the follow-
ing objective function:

Estudent == asﬁR + 55‘679 +’YS(£Q + ED) + <5£T~ (10)

4. Datasets

To train our network, we collect a large-scale multi-view
reflection image dataset by capturing real-world scenes with
commodity cameras. We also propose a method to gener-
ate synthetic multi-view reflection images to facilitate the
feature disentanglement learning of the MKL module.

4.1. Real-world Multi-view Reflection Dataset

To construct our real dataset (i.e., SeqlK), we use two
cameras, Nikon D810 and Google Pixel2, to capture im-
ages of 521 indoor and 494 outdoor scenes. The cameras
are set to have ISO 100-3200 and apertures /4.0 - f/16.
Since we are interested in image sequences of stationary
scenes (without object motion), whose appearance change
is dominated only by camera movement, we carefully se-
lect the scenes so that they contain as few moving fore-
ground objects as possible. To make our dataset cover a
wider range of lighting conditions, we also capture at differ-
ent times of a day to obtain both normal-light and low-light
images. We end up with a real dataset of 1,015 multi-view
image sequences Di.cq = {(It—1, I+, It+1, T¢) }, resulting
in a total of 4,060 images of resolution 1,760 x 1,160.
We randomly select 715 sequences for training and the rest
for testing. Note that since the ground truth transmission
image of the center view in every sequence is available,
our dataset can also be thought of as containing individ-
ual reflection images with the corresponding ground truth.
Hence, it can be used to train and evaluate existing SIRR
methods. However, our dataset contains 1,015 reflection
images, instead of just tens or hundreds of images in exist-
ing SIRR datasets [41, 34, 31].

4.2. Synthetic Multi-view Reflection Dataset

Our real dataset contains only true transmission layers.
To make our MKL more effectively learn the disentangle-
ment of transmission and reflection features, we need to
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Figure 4: Synthesis of a multi-view image sequence.

have both true transmission and reflection layers for every
image, as indicated by Eq. (1). For this, we propose to syn-
thesize multi-view image sequences with realistic reflection
dynamics. As shown in Figure 4, given a transmission layer
and a reflection layer, we put a pair of fixed size windows
on the two images, and move the windows in a synchro-
nized manner along different trajectories, giving a sequence
of cropped region pairs. We then blend each region pair us-
ing the reflection image synthesis method in [5] to form a
sequence of reflection images. We end up with a synthetic
datasst Dsyn = {Stfl, St, St+1}, where St = (It, Tt, Rt),
and I, T;, R; are the reflection image, its ground truth
transmission and reflection layers, respectively.

Specifically, we uniformly split the VOC training
dataset [4] into a transmission set and a reflection set. To
generate an image sequence, we randomly sample two im-
ages from the two sets, respectively. The sliding windows
are first placed randomly, and then shifted at each time step
using a 2D offset vector whose x and y components are uni-
formly sampled from a range. We empirically use [0, 2] for
the transmission layer and [10, 20] for the reflection layer,
so that the synthetic sequences contain modest camera mo-
tion while still temporally stable. Note that our synthesis
method may not be physically accurate since it does not
consider geometry constraints, e.g., parallax. However, our
synthetic sequences contain layer motions that can help sep-
arate different layers, and hence suffice for our purpose of
learning to disentangle transmission and reflection features.
Further, we also train on our real dataset to learn reflection
removal, which can alleviate the potential physical inaccu-
racy. Some example synthetic sequences are shown in the
supplemental.

5. Experiments

We introduce the experimental setup in Section 5.1. We
then compare our proposed method with existing methods
in Section 5.2, and evaluate the effectiveness of the MKL
and network variants in Section 5.3.

5.1. Experimental Setup

For training, we empirically set the loss weights
g, Bey e, to1,1,1,0.1 and a, Bs, vs, (s to 1,1,1,1. We
adopt the Adam solver [13] to optimize the model parame-
ters. We set the initial learning rate as 0.0002 and decay it
by 0.1 every 40 epochs. We first train the teacher model for
80 epoches with a batch size of 10. We keep the weights of

the teacher networks fixed, and then train the student model
for 80 epochs with a batch size of 1. We train our network
using a mixture dataset like [41, 34, 17], i.e., using our syn-
thetic and SeqlK dataset to train the teacher network, and
the synthetic dataset, Seq1K, Real20 [4 1] and Nature [17] to
train the student network. The training images are horizon-
tally flipped in a random manner. We quantitatively evaluate
our results using SSIM and LMSE as [41, 5, 35] on several
popular SIRR datasets, including STR? [31], Real20 [41],
Nature [17], and our real dataset (i.e., Seq1K).

5.2. Comparison with State-of-the-art Methods

We compare our method with leading SIRR methods,
including CEILNet [5], Zhang et al. [41], BDN [39], ER-
RNet [34], RmNet [35], Yang et al. [40], CoRRN [33],
and IBCLN [17]. For fair comparison, we use the results
generated via their provided codes. We re-train CEILNet,
Zhang et al., ERRNet and IBCLN on our training dataset.
Since RmNet and CoRRN require ground truth reflection
layers as supervision, we can only train them on our syn-
thetic dataset. We note that the performance of CoRRN de-
grades after the re-training, and thus do not include these
re-training results. Yang et al. [40] is not learning-based.

Results. Table 1 shows the quantitative results. In gen-
eral, our method outperforms the other methods in most
cases. Specifically, our method achieves the best SSIM and
LMSE performances on Nature, ST R? and SeqlK datasets,
the best SSIM performances on Real20 dataset and the sec-
ond best LMSE performance on Real20 dataset. Our results
are better than all other methods by a large margin on the
STR? dataset. Moreover, as shown in Table 1, for most of
the previous methods, our datasets are able to offer huge
performance gain on various real-world benchmarks, com-
pared with the training datasets used in their own respective
papers (e.g., Real20 for Zhang et al.). This suggests that our
training datasets have the benefit of improving the general-
ization ability of the conventional methods.

Figure 5 shows some qualitative results. We find that
CoRRN, ZHANG et al. and CEILNet suffer from color at-
tenuation or shifting problem. For example, in the 5th -
6th rows, CoORRN, ZHANG et al. and CEILNet predict a
brighter/darker color for the building. Yang et al. tends to
give overly smooth results. For example, in the 4th row,
it smoothens the texture of the table. The possible reason
is that their optimization uses the edge cue, but edge de-
tection errors may lead to undesirable results. RmNet may
ignore sharp reflections (the 5th row). RmNet removes re-
flection by predicting blending factors. Nevertheless, in the
presence of sharp reflection, the blending factors are hard
to estimate. BDN and IBCLN may fail to sharp reflections
(the 5th rows) or strong reflections (the 1st - 2rd rows). This
may be because they iteratively estimate the reflection and
transmission layers, but initial reflection layers are hard to
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Figure 5: Visual comparisons of our method against prior methods on real-world images.

| Real20 Nature SIR? SIR? - Object SIR? - Postcard SIR? - Wild SeqlK

| SSIMt LMSE| SSIM{ LMSE| SSIM{ LMSE| SSIM{ LMSE| SSIM{ LMSE| SSIM{ LMSE| SSIM{ LMSE]
CEILNet [5] 0.7185 0.0294 0.7048 0.0218 0.8520 0.0080 0.8764 0.0054 0.8388 0.0088 0.8113 0.0148 0.8130 0.0179
Zhang et al. [41] | 0.7988 0.0204 0.7401 0.0159 0.8454 0.0072 0.8847 0.0054 0.8082 0.0073 0.8369 0.0132 0.8522 0.0123
BDN [39] 0.7464 0.0297 0.7449 0.0190 0.8616 0.0062 0.8637 0.0054 0.8686 0.0054 0.8290 0.0120  0.8176 0.0186
RmNet [35] 0.7194 0.0306 0.7433 0.0169 0.8328 0.0097 0.8246 0.0108 0.8375 0.0081 0.8459 0.0119 0.8273 0.0154
ERRNet [34] 0.8036 0.0210 0.7590  0.0150 0.8807 0.0062 0.8872 0.0040 0.8786 0.0056 0.8644 0.0169 0.8711 0.0104
CoRRN [33] 0.7140 0.0299 0.7400  0.0154 0.8392 0.0055 0.8678 0.0045 0.8119 0.0054 0.8343 0.0096 0.7809 0.0158
Yang et al. [40] 0.7084 0.0287 0.7415 0.0162 0.8570 0.0065 0.8502 0.0065 0.8651 0.0059 0.8526 0.0087 0.7885 0.0189
IBCLN [17] 0.7816 0.0224 0.7845 0.0126 0.8948 0.0050 0.9020 0.0038 0.8880 0.0052 0.8934 0.0085 0.8738 0.0105
CEILNET (F) 0.7284 0.0267 0.7506 0.0151 0.8689 0.0057 0.8737 0.0044 0.8737 0.0053 0.8339 0.0118 0.8525 0.0117
Zhang (F) 0.7998 0.0202 0.8026 0.0118 0.8952 0.0044 0.9009 0.0036 0.8884 0.0043 0.8994 0.0071 0.8873 0.0083
RmNet (F) 0.7559 0.0245 0.7649 0.0136 0.8862 0.0049 0.8845 0.0041 0.8868 0.0053 0.8904 0.0065 0.8682 0.0104
ERRNet (F) 0.8120 0.0184 0.7950  0.0121 0.8940 0.0046 0.9028 0.0032 0.8810 0.0057 0.9090 0.0057 0.8934 0.0074
IBCLN (F) 0.7759 0.0231 0.7746 0.0131 0.8946 0.0043 0.9026 0.0032 0.880 0.0048 0.8892 0.0046 0.8672 0.0106
Ours 0.8196 0.0187 0.8213 0.0104 0.9009 0.0041 0.9089 0.0031 0.8908 0.0045 0.9084 0.0064 0.9015 0.0072

Table 1: Quantitative comparisons. We compare our method with state-of-art single image reflection removal methods,
CEILNet [5], Zhang et al. [41], BDN [39], ERRNet [34], RmNet [35], Yang et al. [40], CoRRN [33], IBCLN [17] and the
retrained versions of some methods on our training dataset (denoted as ‘(F)’). The performances are reported on four real
datasets, Real20, STR?, Nature and Seq1K. We also present the results on the three subsets of STR? (SIR? - Objects, STR?
- Postcard and STR? - Wild). The best results are highlighted in red.

estimate for sharp and strong reflections. ERRNet works well-engineered network, but it may fail to remove reflec-
better than other existing methods in most cases due to the tions completely sometimes (e.g., the reflection on the toy



| Real20 Nature SIR? SeqlK
| SSIM1 LMSE| SSIMt LMSE| SSIM{ LMSE| SSIM{ LMSE|

w/o MKL 0.7936  0.0210  0.8055  0.0121 0.8861 0.0050  0.8911 0.0079
w/o Decouple Net | 0.8039  0.0195  0.8080  0.0115 0.8945 0.0049 0.8953  0.0076
w/o Flow Net 0.8069  0.0221  0.8096  0.0113  0.8946  0.0046  0.8967  0.0078
w/o Fusion Net 0.8108  0.0203  0.8185  0.0111 0.8957  0.0043  0.8976  0.0075
w/o KT ‘ 0.7944  0.0205  0.8068  0.0129  0.8794  0.0052  0.8859  0.0079
w/o Hallucination | 0.8075  0.0200  0.8153  0.8111 0.8918  0.0047  0.8966  0.0074
w/o Encoder 0.8153  0.0194 08162 0.0106  0.8920  0.0048  0.8968  0.0075
Ours ‘ 0.8196  0.0187  0.8213  0.0104  0.9009  0.0041  0.9015  0.0072

Table 2: Results of the ablation study. The best results are in bold.

in the first row). Further, all the other methods fail to handle
the situation with a dark background (3rd and 4th rows). In
contrast, our method can favorably deal with various types
of reflections, avoid color attenuation/shifting, and produce
sharper outputs. The hallucinated reflection dynamics infor-
mation provides extra useful cues that are lacked in a single
static image, and thus enables our model to more accurately
separate the reflection and transmission layers. Further, the
use of the context block can help our recovered transmission
layers to be more natural.

5.3. Ablation Study

In this section, we compare our method with the follow-
ing variants to evaluate the effectiveness of our MKL mod-
ule, its components, our knowledge transfer strategy and
our student network design.

o w/o MKL. We remove the MKL and fuse the per-image
features into a representation via a convolutional layer.

e w/o Decouple Net. We remove the decouple net in the
MKL and send the per-image features to the flow net.

e w/o Flow Net. We remove the flow net in the MKL and
directly concatenate and send the transmission features to
the fusion net.

e w/o Fusion Net. We remove the fusion net and gener-
ate the distilled representation by directly concatenating the
transmission features.

e w/o Knowledge Transfer (KT). We train the student net-
work alone without the knowledge transfer loss.

e w/o Hallucination. We remove the hallucination module
from the student network and train it alone with the knowl-
edge transfer loss.

e w/o Encoder. We remove the student network’s encoder.

From Table 2, we observe that our final model outperforms
the alternative without the MKL module and the ablations
of the MKL, indicating the effectiveness of our MKL mod-
ule and necessity of all its components. Without the knowl-
edge transfer from the teacher network to the student net-
work, the performance significantly degrades, suggesting
that distilling reflection dynamics knowledge from multi-
view image sequences can greatly help SIRR. We also ob-
serve that without the hallucination module or encoder, the
performance also degrades, demonstrating the effectiveness
of our student network design.

Input Ours GT

Figure 6: Failure cases. Our method may fail when a
transmission layer is textureless and the reflection layer has
strong texture.

6. Conclusion

In this paper, we propose to distill reflection dynamics
knowledge from image sequences of scenes captured by a
moving camera to address the SIRR problem. To this end,
we propose a teacher-student framework, where the teacher
network learns a reflection dynamics representation from
multi-view image sequences with a newly proposed multi-
view knowledge learning module and teaches a student net-
work to remove reflection from single images. We also
construct a large-scale real-world dataset of multi-view re-
flection image sequences for reflection dynamics distillation
and for SIRR evaluation. Extensive experiments demon-
strate the effectiveness of our method and the usefulness of
the newly collected dataset for SIRR. Although our method
works well in most situations, it may fail in the presence of a
clear reflection caused by mixing a strongly textured reflec-
tion layer with a textureless transmission layer, as shown
in Figure 6. For example, in the second row, given the in-
put image only, it is rather difficult to tell which layer the
building-like texture (i.e., the reflection) belongs to. In this
case, decoupling transmission and reflection layers is hard,
resulting in inaccurate reflection dynamics prediction.
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